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Abstract. This paper describes experiences and results applying Sup-
port Vector Machine (SVM) to a Computer Intrusion Detection (CID)
dataset. This is the second stage of work with this dataset, emphasiz-
ing incorporation of anomaly detection in the modeling and prediction of
cyber—attacks. The SVM method for classification is used as a benchmark
method (from previous study [1]), and the anomaly detection approaches
compare so—called “one class” SVMs with a thresholded Mahalanobis dis-
tance to define support regions. Results compare the performance of the
methods, and investigate joint performance of classification and anomaly
detection. The dataset used is the DARPA/KDD-99 publicly available
dataset of features from network packets classified into non—-attack and
four attack categories.

1 Introduction

This paper describes work with the goal of enhancing capabilities in
computer intrusion detection. The work builds upon a study of clas-
sification performance, that compared various methods of classifying
information derived from computer network packets into attack ver-
sus normal categories, based on a labeled training dataset[1]. This
previous work examines the well-studied dataset and the classifica-
tion task, described various approaches to modeling the data empha-
sizing the application of SVMs which had not been applied previ-
ously to this data, and validates our classification methods compared
to other studies with detailed presentation of performance. The pre-
vious work clears the way through exploratory data analysis and
model validation, toward studying whether and how anomaly detec-
tion can be used to enhance performance. The DARPA project that
initiated the dataset used here concluded that anomaly detection



should be examined to boost the performance of machine learning
in the computer intrusion detection task|[2].

In this discussion, the term anomaly detection will mean making
a model from unlabeled data, and using this model to make some
inference about future (or hold-out) data. Our data is a feature
vector derived from network packets, which we will call an “example”
or “sample”. On the other hand, classification will mean building a
model from labeled data, and using that model to classify future (or
hold-out) examples.

One technique to meld these approaches is to stage the two tech-
niques, using anomaly detection to segment data into two sets for
classification. In our previous work, we observe that the data has
substantial nonstationarity[1] between the training set and the tem-
porally and procedurally distinct test set. With classification meth-
ods that can be thought of as learning a decision surface between
two statistical distributions, performance is expected to degrade sig-
nificantly when classifying examples that are from regions not well
represented in the training set. Anomaly detection can be seen as a
problem of learning the density (landscape) or the support (bound-
ary) of a data distribution. Nonstationarity can then be thought of
as data that departs from the support of the distribution. Since we
can judge that these “anomalous” examples will be classified poorly
because they are not representative of the classifier training set, we
can treat them differently (or not at all). A second technique exam-
ined uses anomaly detection with an assumption that any examples
that are different are suspicious, which is an assumption that may
or may not be true depending on the application.

As in our previous work, this paper does not attempt to address
issues in dataset generation or feature selection. The details of the
network and data collection process as well as the way in which this
“raw data” is transformed into well-defined feature vectors is a very
important problem, unfortunately beyond the scope of this study.

2 Dataset Description

The data is described in more detail in [1][2]. Briefly, we are using
data derived from a DARPA project which set up a real network and
logged normal and attack network traffic. This experiment yielded a



training set, and a test set. The test set was recorded after the train-
ing set, and is known to reflect somewhat different activity, which is
a significant feature of our analysis. The data from this experiment
were transformed into a “clean” dataset for the 1999 KDD-Cup, a
competition associated with the Knowledge Discovery and Datamin-
ing conference. This dataset has 41 features for every example, with
a training and test set size of approximately 500,000 and 300,000 ex-
amples, respectively. The data are labeled as attack or normal, and
furthermore are labeled with an attack type that, although too fine-
grained to allow experimentation, can be grouped into four broad
categories of attacks: denial of service (DoS), probe, user to root
(u2r), and remote to local (r2l). This is of particular interest since
performance was shown previously to be very different for these cat-
egories, plausibly because they exhibit distinct nonstationarity.

We have found it useful to further segment the dataset. The train-
ing set from KDD was broken into three parts to investigate modeling
on a stationary dataset: 10% was sampled for model training, 5% for
model tuning (adjusting modeling parameters), and the remainder
is used for validation (assessment of performance on the stationary
data). Although this makes the model training set a small part of
the available data it is sufficient. To reach this conclusion the perfor-
mance was observed as the data size is increased, and through a large
range above this dataset size no significant improvement in gener-
alization performance was seen. Since the object of this study was
the investigation of methods and approaches, rather than exhaus-
tive parametric optimization for a final product, the trade-off be-
tween marginal performance gains and convenience (mostly in terms
of SVM training times) for exploratory investigation is appropriate.
The test set remains intact as a separate dataset so that the im-
pact of nonstationarity can be explored — the test and training data
are not drawn from a uniformly mixed dataset. Our experience has
been that data nonstationarity in on-line classification systems is a
significant application issue.

The methods chosen assume ordered numeric data. Therefore,
ANOVA transformation is applied to all variables, both categorical
(by individual values) and real (by intervals). Each discrete subset
(value or interval) is modeled by the observed probability of attack
in the training data given the category or range, for each variable



independently. This results in a transformed dataset of the same
size but with a monotonic and consistently scaled metric basis. This
dataspace mapping will have a significant effect on the results of the
automated learning, and in previous work has shown itself to be a
valuable technique in managing learning methods on large datasets.

2.1 Dataset Nonstationarity

Some data summaries will indicate the nonstationarity present. Fig-
ure 1’s plots of the first three principal components show the dis-
tinction between the training set and the test set by attack type.

Fig. 1. Plots of the four attack types. In each plot Black points are the training set
attacks, green points are the test set attacks.

normal Dos

Another view of nonstationarity can be observed through predic-
tion performance shown in Table 1. We will use methods to draw a
boundary around a dataset, and then check whether new data falls
within that boundary. From the presentation in Fig. 1 we expect
there to be a distinct difference in the test examples compared to the
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Table 1. Test data performance comparison of the SVM-RBF and Mahalanobis outlier
detection methods.

Attack |% inlier|%outlier| %outlier|%outlier
type |by both{by SVM|by Mahal| by both

Normal| 95.24 1.15 1.99 1.62
DoS 98.17 0.45 0.67 0.71
Probe 55.11 2.02 32.12 10.75
R2L 91.10 0.12 7.73 1.04

U2R 40.35 0.44 37.28) 21.93

Table 2. Validation data performance comparison of the SVM-RBF and Mahalanobis
outlier detection methods.

Attack |% inlier|%outlier| %outlier|%outlier
type |by both{by SVM|by Mahal| by both

Normal| 90.29 3.78 3.00 2.93
DoS 98.77 0.70 0.49 0.04
Probe 67.95 0.25 30.34 1.46
R2L 57.30 0.00 39.61 3.09

U2R 30.00 0.00 48.00f 22.00

boundary generated on the training data. We used the training set,
including both normals and attack examples, to derive such a bound-
ary (within which lies 98% of the training set). Then, we examine
the test set attack data, as to whether it lies within this boundary or
not. We use two methods, Mahalanobis distance (MHD) and a Sup-
port Vector Machine with radial basis kernel (RBF), to construct
the boundary. Table 1 shows the percent of each attack type in the
test set that were called inliers' by both methods, that were called
outliers by only one method, or that were called outliers by both
methods. Table 2 is similar for the validation set (stationary with
respect to the training data).

We can make two broad observations from this table. First, some
attack types have apparently changed significantly in the test set.
Second, the methods do not perform identically, since in some cases
there are significant portions of the attack that were classified as
outlier by one method, and inliers by the other.

Table 3 shows that the proportion of normals is similar between
the training and test sets, but the attacks are not. This is a con-
structed feature of the datasets, and they are not only nonstationary

! we have adopted the term “inliers” to mean those points that are inside the boundary



6

in frequency, but also in type. This is a representative performance
of the method.

Table 3. Distribution of categories in the train and test datasets.

Attack |Train(%)|Test (%)
Normal [{19.69 19.48
DoS 79.24 73.90
PROBE|0.83 1.34
R2L 0.23 5.20
U2R 0.01 0.07

3 Description of Learning Methods

It is important to note that significant effort was spent investigating
alternative parameter settings and learning settings, the results here
show only the most successfully optimized results.

3.1 Anomaly Detection Methods

Mahalanobis Distance Let y be a p X 1 random vector in the Eu-
clidean space RP. Assume that the mean vector of y is p and the
covariance matrix is X. The (squared) Mahalanobis distance from y
to u is defined to be D? = (y — u)’' X~ (y — p1). The Mahalanobis dis-
tance is often used to measure how far a random vector is from the
center of its distribution, see [4] and [5]. 4 and X' are unknown and
are estimated from data with the sample mean, § and the sample
covariance matrix, ﬁ‘, respectively.

If a future observation has a Mahalanobis distance greater than
d(99), the distance that yields the 99th percentile on the training
data, then this new observation is considered an outlier, otherwise
it is considered an inlier.

The equation dy = (y — y)’i’_l(y — 7) defines an ellipsoid in RP.
Geometrically, the above procedure for identifying outliers amounts
to calling any point outside this ellipsoid an outlier and any point
inside the ellipsoid is an inlier. This is a very constrained model
compared to the flexibility of the SVM methods.
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One-class Support Vector Machines Scholkopf et al.[6] adapted the
to estimate the support of a distribution. A fraction, v, of the ob-
served data to be outliers is specified, and a “small”, region, say S,
in feature space that contains at least (1 —v) x 100% of the observed
data. Any point outside of S is an outlier. In general S need not be
an ellipsoid. Assuming that the training data is a random sample
from an unknown distribution P, Scholkopf et al. provide a bound
on the probability that a new observation drawn from P will be out-
side of S. Technical details that we do not address can be found in
[6].

A considerable amount of effort was spent exploring the relative
performance of different SVM kernel and parameter settings. Our
explorations led us to a choice of the RBF kernel, considering also
linear and polynomial kernels of degrees up to seven.

3.2 Method of Categorization

Since we previously explored in detail the optimized performance of
alternative methods for classification [1], in this study we have chosen
a single method in order to limit the number of options. The method
chosen is Support Vector Machines using the radial basis function
kernel[3]. An examination of the performance of this classifier is
shown in Table 4. Note that this one performance point does not
represent the entire spectrum of performance of the method across
different detection rates. This provides indicative performance, and
more detail is available in the report [1].

Table 4. The reference SVM radial basis function classifier performance.

Overall DoS |Probe|/R2L |U2R

error%|det% |fp% |det% |det% |det%|det%
% attacks, test data 91.8 1.7 |6.5 ]0.09
Validation 0.07  199.94|0.11{99.99|99.06 [90.02(20.00
Test 6.86 |91.83(1.43|97.30(79.26 |18.29|25.88

3.3 Anomaly Detection to Preprocess for Classification

Performance in a region of the dataspace well populated in the train-
ing data, i.e., the training set support, is expected to be better than



overall performance, and therefore also better than the examples
outside this support. However, how to treat the performance of the
anomalous examples is an open issue. Should they be considered as
“normals”, lowering the detection rate, or as “attacks”, raising the
false positive rate, should they not be considered at all, or should
they be classified using a different methodology or at least a differ-
ent model? The performance results documented allow the impact
of various system assumptions to be assessed.

4 Results

Table 5. Predicted outliers by known class for the validation and test sets. The %O
column shows the percentage of outliers represented by each category.

RBF MHD

validation test validation test

in| out| %0 in| out| %0 in| out| %0 in| out| %0
Norm| 79596(5726|68.4| 58916|1677(32.7| 80257(5065|59.5| 58408|2185(25.1
DoS |341002(2543(30.4|227172|2681|52.3(341708|1837|21.6|226680{3173|36.5
Probe| 3567 62| 0.7 3634| 532({10.4| 2475|1154|13.6] 2380|1786(20.5
R2L 942| 30| 0.4| 16000| 189| 3.7 557| 415| 4.9| 14768|1421(16.3
U2R 39| 11} 0.1 177 51| 0.9 15| 35| 0.4 93| 135| 1.6
Total |425146(8372 305899(5130 425012|8506 302329(8700

In Table 5 we show the results from defining a region of feature
space that contains 98% of the training data. Two methods were used
to define a region: support vector machines with a radial basis ker-
nel (SVM-RBF) and Mahalanobis distance (MHD). For each type of
attack we present the number of observations that are considered in-
liers and outliers. In addition we also show the distribution of attacks
conditional on being an outlier; these are the entries in the column
labeled %0. Tables 1 and 2 highlight the degree of (dis)agreement
between the two methods.

The overwhelming number of examples for both the validation
and test data correspond to DoS attacks: 79% for the validation
data and 74% for the test data. There seems to be a bias on the
part of both SVM-RBF and MHD to learn the region of feature
space populated by DoS attacks. In the validation set, 68.4% of the
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outliers identified by RBF are normals and for MHD nearly 60% of
the outliers are normals.

The outlier selection rate of SVM-RBF on the test set is pecu-
liar. Both SVM-RBF and MHD were trained so that approximately
2% of the observations would be beyond the support. In the test
set, SVM-RBF identifies only 1.65% observations as outliers; MHD
identifies 2.8% of the test data as outliers. Recall that the test data
is nonstationary while the validation set is not. Not only was the dis-
tribution of attacks different from the training data, but the types
of attacks were also different.

Examining performance on the test set we find that for both
SVM-RBF and MHD a lower percentage of the outliers are normals.
MHD is identifying a much higher percentage of probe, R2L, and
U2R attacks as outliers than is SVM-RBF. In fact, these three cate-
gories is where the nonstationarity of the test data is concentrated.
In table 6 for both the validation and test data we show the compo-

Table 6. Predicted class by known category for the validation and test sets, using the
support vector machine supervised classifier. The %A column shows the percentage of
attacks represented by each category.

validation test

Normal|Attack|% Attack| %A|Normal|Attack|% Attack| %A
Norm| 85222 100 0.12{ 0.03| 60272 321 0.53| 0.14
DoS 69(343476 99.98| 98.70 6961|222892 96.97| 98.43
Probe 50| 3579 98.62| 1.03| 1043| 3123 74.96| 1.38
R2L 155 817 84.05| 0.23| 16143 46 0.28 0.02
U2R 50 0 0.00{ 0.00 172 56 24.56| 0.02
Total | 85546(347972 100.00| 84591(226438 100.00

sition of the predicted classes by attack type. The classifier here is
the supervised SVM discriminator described in Section 3.2.

In the validation set, nearly all the DoS attacks are being classi-
fied as attacks and within the observations classified as attack, but
in the test set, while the distribution of attack types is somewhat
similar to the validation data, the composition of correctly predicted
attacks is quite different. For example, in the validation set, nearly
99% of the probe attacks are identified as attacks but in the test data
only 75% are identified as attacks. Given an observation is classified
as an attack, there is a 1.03% chance that observation is a probe
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attack for the validation set and a 1.38% chance if we look at the
test set.

Table 7. Prediction: % classified as attack for outliers and inliers, by attack

SVM-RBF MHD
validation test validation test
inlier |outlier |inlier|outlier |inlier|outlier|inlier|outlier
Normal| 0.12| 0.07| 0.50| 1.55| 0.08 0.77| 0.21| 9.11
DoS 99.98| 99.57(97.48| 53.64(99.99| 97.44|97.86| 33.47
Probe [98.74| 91.94|82.69| 22.18|98.59| 98.70(95.63| 47.42
R2L 84.93| 56.67| 0.28| 0.53(86.54| 80.72| 0.19| 1.27
U2R 0.00{ 0.00{31.64| 0.00{ 0.00{ 0.00/40.86| 13.33

The results presented in table 7 contrast how the prediction
method performs for data considered as inliers versus data identi-
fied as outliers. We compare performance on the validation and test
set using both SVM-RBF and MHD to identify inliers and outliers.
It is important to keep in mind that the prediction method was
trained on the entire training set and not on just the observations
that would be considered inliers.

The SVM-RBF method is less likely to call an example from
normal, DoS, probe, and R2L an attack if it is classified as an outlier
than if it is classified as an inlier. For non—attack examples in the
validation data, the prediction model is less likely to call an example
identified as an outlier by SVM-RBF an attack than it is if SVM-
RBF calls that example an inlier. In contrast, if MHD identifies the
example as an outlier the prediction model is more likely to classify
that example as an attack than if it is considered an inlier. On the
test set, the prediction model is more likely to call a normal example
an attack if it is identified as a outlier than if it is identified as an
inlier for both SVM-RBF and MHD. A non-attack example in the
test set that is called an outlier by MHD is much more likely to be
classified as an attack than a normal example called an outlier by
SVM-RBF.

For DoS attacks in the validation set, the prediction model works
about the same on inliers and outliers for both SVM-RBF and MHD;
slightly fewer DoS attacks identified as outliers by MHD are classified
as attacks than are DoS attacks identified as inliers. On the test set
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there is a dramatic difference in performance between inliers and
outliers. If SVM-RBF or MHD call a DoS attack an inlier the the
prediction model classifies nearly 98% of these as attacks. However,
if SVM-RBF calls a DoS an outlier, only 54% of these are classified
as an attack; if MHD identifies the example as an outlier, only 34%
these are predicted to be attacks.

Because SVM-RBF identifies so few probe, R2L, and U2R as out-
liers, as shown in Table 5 we should be cautious about any inferences
we might want to make with respect to these attack types.

For probe attacks from the validation set, the prediction model
is classifying approximately the same percent as attacks if MHD call
the example an inlier or outlier; if SVM-RBF calls the example an
outlier then it is less likely to be classified as an attack than if called
an inlier. For probe attacks in the test set the prediction model is
less likely to call an outlier an attack than it is an inlier, for both
SVM-RBF and MHD. If MHD calls the example an outlier the model
is more likely to classify it as an attack than if SVM-RBF calls the
example an outlier.

For R2L attacks in the validation set, approximately inlier clas-
sification is approximately 85% correct for both methods. For exam-
ples identified as outliers by SVM-RBF, only 57% are classified cor-
rectly by the model. In contrast, of the outliers identified by MHD,
the model correctly classifies about 81%. This non—parity is an in-
teresting effect of the method, showing that anomaly detection can
have very different performance. The prediction model applied to
the test data works poorly with respect to R2L attacks, regardless
of whether or not the example is called an inlier or an outlier.

In the validation set the prediction model incorrectly classifies
all (50) of the U2R attacks as normal. In the test set, SVM-RBF
identifies 51 out of 228 examples as outliers and MHD identifies
135. The prediction model correctly classifies 32% of the SVM-RBF
identified inliers and none of the SVM-RBF identified outliers. For
MHD inliers the model correctly classifies 41% of the inliers and 13%
of the outliers.

Table 8 summarizes the performance of the overall system includ-
ing anomaly detection. In this evaluation, the simpler MHD method
out—performs the SVM-RBF method. As expected the inliers have
better performance in both cases. In a real situation, the outliers
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Table 8. Performance on test set, with different selections of the data by anomaly
detection

MHD |SVM-RBF
det%|fp%|det%| fp%
Overall 90.3| 0.5 90.3| 0.5
Inliers Only 91.9( 0.2| 90.9| 0.5
Outliers as Normals| 89.5| 0.2| 89.7| 0.5
Outliers as Attacks | 92.1| 3.8 91.0| 3.3

must be accounted for, and the results show what happens if we
label by default all of the outliers as either attacks or normals. La-
beling them as normals lowers the detection rate from the baseline
(overall), with some improvement to the false positive rate (even
though this is not significant for the SVM-RBF). Labeling outliers
as attacks raises the detection rate, but also raises the false-positive
rate significantly.

5 Discussion

The practical import of this analysis is not in terms of a finished al-
gorithm product, since this study was on static and historical data.
The primary contribution is the significance of considering network-
based attack detection as distinct attack types, and the impact of
anomaly detection on nonstationarity. The information presented
shows clearly that different types of attacks have both very different
signatures, as well as very different types of change. Also, simply the
dominance in numbers of some categories will have a large effect on
automated learners, as they try to minimize a criterion related to
overall error minimization. The difference in performance between
attack classes is important, as they each presumably have different
associated misclassification costs. That these methods can treat the
types differently, both as inliers and outliers, is an important con-
sideration to the application engineer.

If these ideas were to be incorporated into a working system, the
question of what to do with the outlier class arises. Choosing an
arbitrary performance level on test set, the classifier along on all the
data performance with a detection rate of 90.3% with a false-positive
rate of 0.53%. On only the inliers the performance increases, but the
outliers still need to be accounted for. Table 8 summarized these
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results. Further exploration of a staged approach where inliers and
outliers have different detection thresholds, or even different models
altogether will be a solution to improving overall performance.

The anomaly detection segmentation increases the classification
performance of inliers, as was hypothesized. The details of the per-
formance, as discussed in Section 4, are sometimes puzzling and
counterintuitive. For example, the percentage of outliers decreases
from the validation to test sets for the SVM-RBF overall, and for
some categories in the MHD, when natural expectation is that they
would increase for a nonstationary dataset. Also, why the individ-
ual attack categories have their respective behavior with respect to
nonstationarity in particular is not understood.

These algorithms are suitable for inclusion on a high speed net-
work analysis tool, such as the programmable FPGA based NIW
Sensor developed at Los Alamos[9]. This hardware package is capa-
ble of analyzing network traffic at gigabit speeds, and is the flip-side
of this project in algorithm development.

Finally, we will comment on our experience in using these meth-
ods. SVMs with nonlinear kernels are challenging to use as a stand-
alone tool for exploratory data analysis. Our experience has been
that changes in parameters (e.g., kernel, regularization) can have
significant effects in the performance of the algorithm, but yet these
changes typically don’t have clear causes. In an data analysis situa-
tion, it often isn’t enough to simply tune for the best performance.
In this case, how to tune for particular effects is not at all clear. One
also wants to gain a better understanding of the data and problem.
Kernel SVMs (and other nonlinear learners) are often deficient in
this respect.

However, as these results show, in comparison to an intuitively
understandable method such Mahalanobis distance, SVMs can be
a valuable tool for gaining information regarding high-dimensional
data, as well as good classification performance. If no comparative
method is used, it would not be apparent whether the SVM is ap-
proximating Gaussian forms, or whether, as is the case here, the
SVM is fitting a more wandering boundary. The analysis here clearly
shows two things: the data is not approximately Gaussian (as is also
suggested by the graphs), and the degree of flexibility in the model
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of the support has a significant effect on the results both overall and
by category.

We explored and used both the currently popular l:bSVM and
SVMLight software for this work[7][8]. Currently, neither tool yields
continuous values for outlier status, which, although arguably un-
sound, can be used for exploration of performance around the mar-
gin, and would provide an ad-hoc method for rank-selecting outliers.

6 Conclusion

Computer network attack detection is potentially tractable using au-
tomated learners and classifiers. Challenges remain for this method-
ology. One challenge is to develop an understanding of whether core
attack types have a long-term signature; if not, tedious filtering data
by hand to generate labeled datasets at short intervals is required.
Anomaly detection methods have significant promise in this area,
but they have not been demonstrated to have a performance with
significant enough probability of detection at acceptable false-alarm
rates.

Anomaly detection used as a method for filtering nonstationary
example and ensure that classifiers operate in domains that were
populated sufficiently in their training sets has been demonstrated
to increase performance in this problem domain, as expected. The
question remains of how to treat the outlier data robustly so that
performance can be increased overall. One solution to this would be
to relax the degree of discrimination of inliers, so that the training
set will yield enough outliers to train an outlier-specific model. An-
other method could employ pure anomaly detection methods for the
outliers. These are interesting directions for future work.

In this case, the SVM method did not lead to the boost in per-
formance of the Mahalanobis distance method. There are several
possible reasons for this. One is that there is perhaps not enough
data to accurately assess the support of the distribution in all cases.
The strong assumptions in the Mahalanobis distance measure, i.e.
that the data can be represented by estimated mean and covariance,
may provide required regularization. On the other hand, it is true
that the SVM can be tuned to produce a more rigid classification
surface, and can probably provide similar performance in this way
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(although expanding the margin to include all data is costly). An-
other possible explanation is that the margin attention of the SVM
emphasized different classes naturally, and so can provide a richer
range of performance tradeoffs. The SVM method has provided in-
sight into the data characteristics, and are an additional for data
exploration and classification.

Additional areas for research suggest themselves. On-line adap-
tive anomaly detection is an intuitively interesting area, but whether
an adaptive method can be biased with sufficient accuracy to dis-
tinguish attacks from non-attacks is an open question. Classifica-
tion models of each category, with corresponding methods for dis-
tinguishing what is an inlier vs. outlier for each category seems like a
compelling direction for improving performance. Studying how these
machine learning methods complement rule-based systems is impor-
tant in this application domain. This leads to the general topic of
model ensembles: how capable families of models can be constructed,
and how much performance increase can be realized.
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